<address id="xrvvb"><listing id="xrvvb"></listing></address>

          <form id="xrvvb"></form>

          <address id="xrvvb"></address>

          華中科技大學學報(自然科學版) 2020, Vol. 48 Issue (9): 57-63 DOI10.13245/j.hust.200910

          欄目:計算機與控制工程
          面向數據隱私差異的隱私保護數據發布方法
          俞藝涵 a , 周大偉 a , 李洪成 b , 吳曉平 a
          a. 海軍工程大學信息安全系,湖北 武漢 430033
          b. 國防大學聯合作戰學院通信網絡信息傳輸與分發技術重點實驗室,河北 石家莊 050000
          摘要 針對關系型數據中多維敏感屬性隱私差異所引起的隱私保護效用降低問題,提出了一種能有效表達多維敏感屬性隱私差異的隱私保護數據發布方法.基于一種多維桶分組技術(MSB)對數據集的多維敏感屬性隱私差異以及記錄價值進行量化區分,給出記錄分組優先級參數的計算方法,進而可實現基于記錄分組優先級參數多維桶記錄分組(TPSB)算法的隱私保護數據發布.實驗結果表明:在權重參數合理賦值條件下,該方法在保證數據發布效率的同時可有效提升數據發布的質量.
          關鍵詞 隱私保護 ;數據發布 ;多維敏感屬性 ;隱私差異 ;多維桶分組
          Privacy protection data publishing method for data privacy differences
          YU Yihan a , ZHOU Dawei a , LI Hongcheng b , WU Xiaoping a
          a. Department of Information Security,Naval University of Engineering,Wuhan 430033,China
          b. Science and Technology on Communication Networks Laboratory,College of Jonit Operations,National Defence University,Shijiazhuang 050000,China
          Abstract Aiming at the problem of privacy protection utility caused by the difference of privacy of multi-dimensional sensitive attributes in relational data,a privacy protection data publishing method that can effectively express the privacy difference of multi-dimensional sensitive attributes was proposed.The method quantified the multi-dimensional sensitive attribute privacy difference and the record value of the data set,gave the calculation method of record packet priority parameter,which was based on a multi-dimensional bucket grouping technique called multi-sensitive bucketization (MSB).Then,privacy protection data publishing based on the record packet priority parameter multi-sensitive bucketization (TPSB) algorithm was implemented.Experiments show that under the condition of reasonable weighting parameters,this method can effectively improve the quality of data publishing while ensuring data publishing efficiency.
          Keywords privacy protection ; data publishing ; multi-dimensional sensitive attributes ; privacy difference ; multi-sensitive bucketization (MSB)
          基金資助國家自然科學基金資助項目(61672531);網絡空間安全重點專項資助項目(SQ2018YFGX210002-04);國防科技重點實驗室基金資助項目(6142104190101)

          中圖分類號TP301
          文獻標志碼A
          文章編號1671-4512(2020)09-0057-07
          參考文獻
          [1] 王倩宜,歐陽榮彬.數據服務中心的隱私保護框架設計與應用研究[J].華中科技大學學報(自然科學版),2016,44(S1):152-157.
          [2] SWEENEY L.K-anonymity:a model for protecting privacy[J].International Journal of Uncertainty,Fuzziness and Knowledge-Based Systems,2002,10(5):557-570.
          [3] SOWMYA R,SUNEETHA K R.Data mining with big data[C]// Proc of 2017 11th International Conference on Intelligent Systems and Control (ISCO).Coimbatore:IEEE,2017:246-250.
          [4] AFZALI G A,MOHAMMADI S.Privacy preserving big data mining:association rule hiding using fuzzy logic approach[J].Iet Information Security,2018,12(1):15-24.
          [5] 楊曉春,王雅哲,王斌.數據發布中面向多敏感屬性的隱私保護方法[J].計算機學報,2008(4):574-587.
          [6] LIU T,NI W,CHONG Z,et al.Privacy-preserving data publishing methods for multiple numerical sensitive attributes[J].Journal of Southeast University (Natural Science Edition),2010,40(4):669-703.
          [7] LIU S C,JING H,JU H,et al.Privacy preserving technology for multiple sensitive attributes in data publishing[J].Application Research of Computers,2011,28(6):2206-2211.
          [8] LIU Q,SHEN H,SANG Y.Privacy-preserving data publishing for multiple numerical sensitive attributes [J].Tsinghua Science and Technology,2015,20(3):246-254.
          [9] BAYARDO R J.Data privacy through optimal k-anonymization[C]// Proc of International Conference on Data Engineering.Tokyo:IEEE,2005:217-228.
          [10] FUNG B C M,WANG K,YU P S.Top-down specialization for information and privacy preservation [C]// Proceedings of the 21st International Conference on Data Engineering.Tokyo:IEEE Computer Society,2005:205-216.
          [11] MACHANAVAJJHALA A,KIFER D,GEHRKE J.L-diversity:privacy beyond k-anonymity[J].Acm Transactions on Knowledge Discovery from Data,2007,1(1):3-5.
          [12] LI N,LI T,Venkatasubramanian S.t-Closeness:privacy beyond k-anonymity and l-diversity[C]// Proc of IEEE 23rd International Conference on Data Engineering.Istanbul:IEEE,2007:106-115.
          [13] JOHNSON A E W,POLLARD T J,LU S,et al.MIMIC- III,a freely accessible critical care database[J].Scientific Data,2016,3:160035.
          文獻來源
          俞藝涵, 周大偉, 李洪成, 吳曉平. 面向數據隱私差異的隱私保護數據發布方法[J]. 華中科技大學學報(自然科學版), 2020, 48(9): 57-63
          DOI:10.13245/j.hust.200910
          澳门盘口