<address id="xrvvb"><listing id="xrvvb"></listing></address>

          <form id="xrvvb"></form>

          <address id="xrvvb"></address>

          華中科技大學學報(自然科學版) 2020, Vol. 48 Issue (9): 89-94 DOI10.13245/j.hust.200915

          欄目:電子與信息工程
          一種基于小波變換的次級通道在線辨識方法
          高偉鵬 , 賀 國 , 劉樹勇 , 王偉豪
          海軍工程大學動力工程學院,湖北 武漢 430033
          摘要 針對實際主動控制系統中,次級通道隨著傳感器位置、作動器輸出特性變化而實時改變這一問題,將小波變換思想引入到在線辨識算法結構中,改進在線辨識算法.通過小波變換將誤差信號中控制信號相關分量與隨機噪聲相關分量分離開來,極大程度削弱甚至消除了辨識環節和控制環節之間相互影響,提高了算法的收斂性能和控制精度.基于Matlab/Similink進行控制仿真,搭建試驗臺架進行控制試驗.仿真和試驗結果表明:改進后算法辨識精度高,收斂速度快,控制效果好.
          關鍵詞 小波變換 ;衰減因子的最小二乘遞推(AFRLS)算法 ;閾值壓縮 ;在線辨識 ;隔振試驗臺架 ;振動抑制
          Method for online identification of secondary path based on wavelet transform
          GAO Weipeng , HE Guo , LIU Shuyong , WANG Weihao
          College of Power Engineering,Naval University of Engineering,Wuhan 430033,China)
          Abstract In the actual active control system,the secondary path was changed with the sensor position and actuator output characteristics in real time.Accurate secondary path modeling was the premise of FxLMS (filter-x least mean square) adaptive control.The wavelet transform was introduced into online identification algorithm structure,and the online identification algorithm was optimized.The wavelet transform was used to separate the control signal dependent fraction and the random noise dependent fraction from the error signal,which greatly weakened or even eliminated the interaction between identification unit and control unit.The convergence performance and control precision was improved.The vibration isolation platform control simulation was carried out based on Matlab/Simulink,and the test bench was built for control experiment.The simulation and experimental results show that the improved algorithm has highly identification accuracy,fast convergence speed and good control effect.
          Keywords wavelet transform ; attenuation factor recursive least square (AFRLS) algorithm ; threshold compression ; online identification ; vibration isolation test bench ; vibration suppression
          基金資助國家自然科學基金資助項目(51579242);國家自然科學基金青年基金資助項目(51509253)

          中圖分類號TP391;O328
          文獻標志碼A
          文章編號1671-4512(2020)09-0089-06
          參考文獻
          [1] FULLER C R,ELLIOTT S J,NELSON P A.Active control of vibration[M].San Diego:Academic Press,1996.
          [2] 陳克安.有源噪聲控制[M].北京:國防工業出版社,2014.
          [3] 浦玉學.自適應振動噪聲主動控制若干關鍵問題研究[D].南京:南京航空航天大學航空宇航學院,2015.
          [4] AN F Y,SUN H L,LI X D,et al.Optimization of parameters in decentralized adaptive control algorithm [J].Journal of Vibration Engineering,2013,26(1):48-54.
          [5] 陳紹青.電磁式主被動復合隔振器關鍵技術研究[D].合肥:中國科學技術大學自動化系,2013.
          [6] 浦玉學,張方,姜金輝,等.一種基于延遲系數技術的次級通道在線辨識新方法[J].振動與沖擊,2014,33(23):74-80.
          [7] ERIKSSOK L J,ALLIE M C.Use of random noise for on-line transducer modeling in an adaotive active attenuation system[J].Acoust Soc Am,1989,85(2):797-802.
          [8] BAO C,SAS P H,VAN B.Adaptive active control of noise in 3-D reverberant enclosures[J].Journal of Sound and Vibration,1993,161:501-514.
          [9] ZHANG M,LAN H,WEE S.Cross-update active noise control system with online secondary path modeling [J].IEEE Transactions on Speech and Audio Processing,2001,9(5):598-602.
          [10] 楊鐵軍,顧仲權,魯明月,等.基于誤差通道在線辨識的結構振動主動控制系統[J].振動與沖擊,2004,23(3):55-59.
          [11] 高偉鵬.自適應主動控制中誤差通道辨識研究[D].武漢:海軍工程大學動力工程學院,2016.
          [12] NIU W C,ZOU C Z,LI B,et al.Adaptive vibration suppression of time-varying structures with enhanced FxLMS algorithm[J].Mechanical System and Signal Processing,2019,118:93-107.
          [13] 王永驥,劉莎,劉磊,等.基于粒子群優化算法的氣動參數在線辨識方法[J].華中科技大學學報(自然科學版),2016,44(3):116-120.
          [14] BEHURIA A,MISHRA B P,GOEL P,et al.A novel variable step-size feedback filtered-X LMS algorithm for acoustic noise removal[C]// Proc of Conf Adv Comput Common Informatics.Washington:IEEE Computer
          Society,2015:166-171.
          [15] OLAZA E G,NUNEZ P J.Application of the wavelet packet transform to vibration signals for surface roughness monitoring in CNC turning operations[J].Mechanical System and Signal Processing,2018,98:902-919.
          [16] TIMOTHY P,IDRIS A E,HERNANDO C O.Dynamic classification using multivariate locally stationary wavelet processes[J].Signal Processing,2018,152:118-129.
          [17] YANG L H,LIU S Y,ZHANG H P,et al.Hybrid filtered-X adaptive vibration control with internal feed- back and online identification[J].Shock and Vibration,2018(2):1-15.
          文獻來源
          高偉鵬, 賀 國, 劉樹勇, 王偉豪. 一種基于小波變換的次級通道在線辨識方法[J]. 華中科技大學學報(自然科學版), 2020, 48(9): 89-94
          DOI:10.13245/j.hust.200915
          澳门盘口