<address id="xrvvb"><listing id="xrvvb"></listing></address>

          <form id="xrvvb"></form>

          <address id="xrvvb"></address>

          華中科技大學學報(自然科學版) 2020, Vol. 48 Issue (9): 113-118 DOI10.13245/j.hust.200919

          欄目:船舶工程
          離心泵仿生表面減阻降噪特性研究
          代 翠 a , 戈志鵬 b , 董 亮 b , 劉厚林 b
          a. 江蘇大學能源與動力工程學院
          b. 江蘇大學流體機械工程技術研究中心,江蘇 鎮江 212013
          摘要 為了研究離心泵仿生葉片的減阻降噪特性,獲得葉片壁面剪應力與減阻率、效率和噪聲變化情況的關系,提取出了鯊魚皮膚的表面特征,建立了具有V型槽表面葉片的離心泵模型.通過剪切應力傳輸(SST) 湍流模型對離心泵內部流場進行數值模擬,基于Proudman方法和聲類比方程對泵內部聲場進行了預測計算.研究結果表明:仿生表面能夠有效控制葉片近壁面邊界層的流體流動,在出口處的壁面剪應力梯度變小,工作面葉片的平均剪應力最大降幅達29%;仿生表面可以降低的最大減阻率為3.1%,離心泵的水力效率最大提高2.06%;仿生葉片溝槽表面能夠改變葉輪流道內的渦結構,降低離心泵葉輪內部的湍動程度,減小流道內的聲功率;與光滑葉片相比,仿生葉片的總聲壓級的降幅最大為2.68%;隨著流量的增大,壁面平均剪應力的變化率、效率、總聲壓級及減阻率等都隨之增大.
          關鍵詞 離心泵 ;仿生 ;減阻 ;降噪 ;剪應力 ;V型槽
          Research on characteristics of drag reduction and noise reduction on V-groove surface of bionic blade of centrifugal pump
          DAI Cui a , GE Zhipeng b , DONG Liang b , LIU Houlin b
          a. School of Energy and Power Engineering,Jiangsu University
          b. Research Center of Fluid Machinery Engineering and Technology,Jiangsu University,Zhenjiang 212013,Jiangsu China
          Abstract The surface features of the shark skin were extracted and a centrifugal pump model with V-groove surface blades was established for studying the characteristics of drag reduction and noise reduction of the bionic blade of a centrifugal pump and obtaining the relationship between the wall shear stress of the blade surface and the drag reduction rate,efficiency and noise changes.The internal flow field of the centrifugal pump was numerically simulated by the shear stress transfer (SST) turbulence model,and the internal sound field of the pump was predicted based on the Proudman method and the acoustic analog equation.The results show that the fluid flow in the boundary layer near the wall of blades can be controlled effectively by the bionic surface,so that the wall shear stress gradient at the outlet becomes smaller and the maximum amplitude reduction on the average shear stress of pressure face of the blade reaches 29%.The maximum drag reduction rate that the bionic surface can reduce is 3.1%,and the enhancement of the centrifugal pump efficiency peaks at 2.06%.The bionic blade groove surface can change the vortex structure in the impeller flow channel,reduce the of turbulence degree inside the centrifugal pump impeller,and reduce the acoustic power in the flow channel.Compared with the smooth blade,the total sound total pressure level of the bionic blade has the largest decrease of 2.68%.As the flow rate increases,the change rate of the average wall shear stress increases gradually,and the drag reduction rate,the efficiency of the centrifugal pump,and the change rate of the total sound pressure level of the internal sound field increase.
          Keywords centrifugal pump ; bionic ; drag reduction ; noise reduction ; shear stress ; shear stress
          基金資助國家自然科學基金資助項目(51879122,51779108,51779106);鎮江市重點研發計劃資助項目(GY2017001,GY2018025);西華大學流體及動力機械教育部重點實驗室開放課題資助項目(szjj2017-094);過程裝備與控制工程四川省高校重點實驗室開放基金資助項目(GK201816)

          中圖分類號TH311
          文獻標志碼A
          文章編號1671-4512(2020)09-0113-06
          參考文獻
          [1] 劉厚林,李鈺,王凱,等.流體激勵下多級離心泵輻射噪聲特性研究[J].華中科技大學學報(自然科學版),2017,45(11):92-97.
          [2] 宋保維,潘光,沙輝.隨行波表面水下減阻降噪技術和機理研究綜述[J].魚雷技術,2001,9(4):1-5.
          [3] 牟介剛,代東順,谷云慶,等.非光滑表面離心泵葉輪的流動減阻特性[J].上海交通大學學報,2016,50(2):306-312.
          [4] TIAN L,GAO Z,REN L,et al.The study of the efficiency enhancement of bionic coupling centrifugal pumps [J].Journal of the Brazilian Society of Mechanical Sciences & Engineering,2013,35(4):517-524.
          [5] 孫少明,徐成宇,任露泉,等.軸流風機仿生葉片降噪試驗研究及機理分析[J].吉林大學學報(工學版),2009,39(2):382-387.
          [6] ZHANG C C,WANG J,SHANG Y G.Numerical simulation on drag reduction of revolution body through bionic riblet surface[J].Science China Technological Sciences,2010,53(11):2954-2959.
          [7] 代翠,陳怡平,董亮,等.離心泵葉片仿生非光滑結構的布置位置[J].排灌機械工程學報,2020,38(3):241-247.
          [8] 代東順.非光滑表面流動減阻特性在離心泵上的應用研究[D].杭州:浙江工業大學機械學院,2015.
          [9] TU J.Computational fluid dynamics a practical approach [M].Oxford:Butterworth-Heinemann,2008.
          [10]田麗梅,梅浩然,李新紅,等.基于仿生耦合功能表面的離心水泵增效機制研究[J].農業機械學報,2015,46(4):65-69.
          [11]王昕.基于子波變換的周期擾動下壁湍流渦結構多尺度分析[J].實驗力學,2003,18(3):331-337.
          [12]PROUDMAN I.The generation of noise by isotropic turbulence[J].Proceedings of the Royal Society of London,1952,214(1116) :119-132.
          [13]盧永剛,王洋,王秀禮,等.管道輸油泵流體噪聲模擬及泵噪聲測試方法[J].排灌機械工程學報,2017,35(8):645-651.
          文獻來源
          代 翠, 戈志鵬, 董 亮, 劉厚林. 離心泵仿生表面減阻降噪特性研究[J]. 華中科技大學學報(自然科學版), 2020, 48(9): 113-118
          DOI:10.13245/j.hust.200919
          澳门盘口